Transport properties and efficiency of elastically coupled Brownian motors.

نویسندگان

  • A Igarashi
  • S Tsukamoto
  • H Goko
چکیده

As models for biological molecular motors, Brownian motors have been studied recently by many workers, and their physical properties such as velocity, efficiency, and so on, have been investigated. They have also attracted much interest in an application to nanoscale technology. It is significant to study more complex systems, that is, coupled Brownian motors, in detail, since Brownian motors with a single particle have been mainly studied until now. In this paper, we consider Brownian motors coupled mutually with elastic springs, and investigate the dynamics of the model and the efficiency of energy conversion. In particular, we find that the center of the mass of the elastically coupled particles moves faster than the corresponding single-particle model, and also that the efficiency of the coupled-particle model is larger than that of the single-particle model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synchronization of elastically coupled processive molecular motors and regulation of cargo transport.

The collective work of motor proteins plays an important role in cellular transport processes. Since measuring intermotor coupling and hence a comparison to theoretical predictions is difficult, we introduce the synchronization as an alternative observable for motor cooperativity. This synchronization can be determined from the ratio of the mean times of motor resting and stepping. Results from...

متن کامل

A Biologically Inspired Ratchet Model of Two Coupled Brownian Motors

A ratchet model for coupled Brownian motors, inspired by the motion of individual two-headed molecular motors on cytoskeletal filaments, is proposed. Such motors are modeled as two elastically coupled Brownian particles, each of which moves in a flashing ratchet potential. The ratchet potentials felt by the individual particles are anti-correlated, modeling the successive binding and unbinding ...

متن کامل

Realistic Models of Biological Motion

The origin of biological motion can be traced back to the function of molecular motor proteins. Cytoplasmic dynein and kinesin transport organelles within our cells moving along a polymeric filament, the microtubule. The motion of the myosin molecules along the actin filaments is responsible for the contraction of our muscles. Recent experiments have been able to reveal some important features ...

متن کامل

Hydrodynamic Interactions Introduce Differences in the Behaviour of a Ratchet Dimer Brownian Motor

We use the Brownian dynamics with hydrodynamic interactions simulation in order to describe the movement of an elastically coupled dimer Brownian motor in a ratchet potential. The only external forces considered in our system were the load, the random thermal noise and an unbiased thermal fluctuation. We observe differences in the dynamic behaviour if hydrodynamic interactions are considered as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 64 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2001